Accepted Manuscript -

Dual inhibition of ERK1/2 and AKT pathways is required to suppress the growth and
survival of endometriotic cells and lesions

Joe A. Arosh, Sakhila K. Banu

PII: S0303-7207(18)30364-2
DOI: https://doi.org/10.1016/j.mce.2018.12.011
Reference: MCE 10351

To appearin:  Molecular and Cellular Endocrinology

Received Date: 14 September 2018
Revised Date: 17 December 2018
Accepted Date: 17 December 2018

Please cite this article as: Arosh, J.A., Banu, S.K., Dual inhibition of ERK1/2 and AKT pathways is
required to suppress the growth and survival of endometriotic cells and lesions, Molecular and Cellular
Endocrinology (2019), doi: https://doi.org/10.1016/j.mce.2018.12.011.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to

our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.


https://doi.org/10.1016/j.mce.2018.12.011
https://doi.org/10.1016/j.mce.2018.12.011

O N O U

10
11
12
13
14
15
16
17

18

19
20
21
22
23
24
25

26
27
28
29
30
31

DUAL INHIBITION OF ERK1/2 AND AKT PATHWAYS IS REQUIRED TO SUPPRESS THE
GROWTH AND SURVIVAL OF ENDOMETRIOTIC CELLS AND LESIONS

Joe A. Arosh* and Sakhila K. Banu

Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative
Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University,
Texas-77843, College Station, USA.

Short Title: ERK1/2 and AKT Pathways in Endometriosis

Disclosure Statement: The authors have nothing to disclose.

* Corresponding Author: Joe Arosh., PhD, Department of Integrative Biosciences, College of
Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
77843, Phone: 979-845-6173, Fax: 979-847-8981. Email: jarosh@cvm.tamu.edu

Acknowledgement: This work is partially supported by National Institute of Child Health and
Human Development (NICHD) Grants HD065138, HD066248 and HDO079625. We thank
previous and current lab members of Dr. Arosh’s laboratory for the technical assistance and

animal husbandry during the course of the study.



32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50

51
52
53
54
55
56
57
58
59
60
61
62
63
64

ABSTRACT

Endometriosis is an estrogen-dependent and progesterone-resistant gynecological inflammatory
disease of reproductive-age women. Current hormonal therapies targeting estrogen can be
prescribed only for a short time. It indicates a need for non-hormonal therapy. ERK1/2 and AKT
pathways control several intracellular signaling molecules that control growth and survival of
cells. Objectives of the present study are to (i) determine the dual inhibitory effects of ERK1/2
and AKT pathways on proliferation, survival, and apoptosis of human endometrioitc epithelial
cells and stromal cells in vitro; (ii) on growth and survival of endometrioitc lesions in vivo in
xenograft mouse model of endometriosis of human origin; and (iii) establish the associated
ERK1/2 and AKT downstream intracellular signaling modules in the pathogenesis of
endometriosis. Our results indicated that combined inhibition of ERK1/2 and AKT highly
decreased the growth and survival of human endometriotic epithelial cells and stromal cells in
vitro and suppressed the growth of endometriotic lesions in vivo compared to inhibition of either
ERK1/2 or AKT pathway individually. This cause-effect is associated with dysregulated
intracellular signaling modules associated with cell cycle survival, and apoptosis pathways.
Collectively, our results indicate that dual inhibition of ERK1/2 and AKT pathways could emerge

as potential non-hormonal therapy for the treatment of endometriosis.
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INTRODUCTION

Endometriosis is an estrogen-dependent and progesterone-resistant gynecological inflammatory
disease of reproductive-age women. The prevalence of endometriosis is ~5-10% in
reproductive-age women, and it increases to 20-30% in women with subfertility, and further it
increases to 40-60% in women with pain and infertility [1,2]. Endometriosis is clinically and
pathologically characterized by the presence of functional endometrium as heterogeneous
lesions or phenotypes outside the uterine cavity. At the time of clinical presentation, most
women have established active endometriosis for a long period of time 8-10 years [1,2], and
majority of these women experience pelvic pain, infertility, and recurrence of disease. The
current anti-estrogen therapies can be prescribed only for a short time because of the
undesirable side effects on menstruation, pregnancy, and bone health, and failure to prevent

recurrence.

The pathogenesis of endometriosis is an enigma in reproductive medicine. The most widely
accepted hypothesis first advanced by Sampson in 1921 is that viable endometrial tissue
fragments move in a retrograde fashion through the fallopian tubes into the pelvic cavity during
menstruation [3]. One of the important behaviors of the endometriotic cells is resistant to
apoptosis [4-9]. We and others have proposed that therapeutic strategies to intervene survival
or apoptosis pathways in endometriotic lesions may lead to the identification of effective

treatment modalities for endometriosis [4-10].

Extracellular signal-regulated kinase (ERK1/2) and phosphatidylinositide 3-kinase (PI3K) and
AKT/protein kinase B (PI3K-AKT) are the well-studied pathways which regulate proliferation,
survival, and apoptosis of the cells by integrating multiple intracellular signaling modules [11-
14]. Upstream, ERK1/2 is activated by a small G protein Ras-Raf family members followed by
MEKZ1/2. Upstream, AKT is activated by PI3K followed by PDK1. Downstream, ERK1/2 or AKT
regulates several signaling molecules that include protein kinases, protein phosphatases,
receptors, transcriptional factors, and several other proteins. Recent studies have identified a
role for multiple redundant and complementary intracellular cell signaling modules such as Ras-
Raf-ERK1/2-p90RSK [15-18], PI3K-AKT-p70S6K-mTOR [17-19], ERK1/2 or AKT-IkBa-NFkB
[20], and ERK1/2 or AKT-Wnt-Bcatenin pathways [21-23] in proliferation, survival, and apoptosis

of several mammalian cell types.
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To date, much information is available on the role of ERK1/2 or AKT signaling in proliferation,
growth and survival of a variety of cells [11-13,24,25]. Relatively, a small number of studies
have demonstrated molecular link between ERK1/2 or AKT pathways and endometriosis [25-
32]. No studies have reported combined inhibition of ERK1/2 and AKT pathways in
endometriosis. In early 2009, we have reported that Bcl2, Bcl-XL, pBad112, pBad136, pERK1/2,
pPAKT, active-Bcatenin, and NFkB proteins are highly expressed in the epithelial cells and
stromal cells of the peritoneal endometriotic lesions in women compared to endometrium from
the healthy women [10]. Later studies by other groups, using human tissues, cell cultures, and
animal models, confirmed that ERK1/2 and AKT pathways are involved in the growth and
survival of peritoneal endometriotic lesions. AKT and ERK1/2 pathways are temporally activated
during establishment of endometriosis [27,29]. Inhibition of AKT with inhibitor MK2206 or
ERK1/2 with inhibitor U0126 did not increase the expression of cl-caspase-3 in primary cultured
stromal cells derived from deep endometriotic lesions from women [28]. By contrast, either
inhibition of AKT or ERK1/2 with the same inhibitors increased expression of cl-caspase-3 in
primary cultured stromal cells derived from endometrioma [29]. The difference in activation of
caspase-3 by AKT or ERK1/2 pathways in these two studies may be due to the sensitivity of
endometriotic stromal cells derived from different lesional phenotypes or existence of
compensatory mechanisms between AKT and ERK1/2 pathways. Interestingly, inhibition of AKT
pathway resulted in activation of ERK1/2 pathway; similarly, inhibition of ERK1/2 pathway
resulted in activation of AKT pathway in primary cultured endometriotic cells derived from deep
endometriotic lesions from women [28] and in other cancer or tumor cells [14,33-36]. Inhibition
of ERK1/2 or AKT pathway patrtially decreased proliferation and viability of human endometriotic
stromal cells in vitro, and growth of endometriotic lesions in mouse model of endometriosis in
vivo [27-29]. This partial growth inhibitory or apoptotic effect appears to be due to compensatory
mechanisms between the ERK1/2 and AKT pathways.

The remarkable redundancy of ERK1/2 and AKT signaling pathways that control interactions
among proliferation, survival, and apoptosis underscores the importance of combined inhibition
of the ERK1/2 and AKT pathways to suppress the growth and survival of endometriotic lesions.
The primary objectives of the present study are to determine the dual inhibitory effects of
ERK1/2 and AKT pathways (i) on proliferation, survival, and apoptosis of the human
endometrioitc epithelial cells and stromal cells in vitro and (ii) on growth and survival of the

endometrioitc lesions in vivo in xenograft mouse model of endometriosis of human origin. (iii) An
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additional objective is to establish the associated ERK1/2 and AKT downstream intracellular
signaling modules in the pathogenesis of endometriosis.
MATERIALS AND METHODS

Materials: General chemicals and reagents used in the study were molecular and cell biological
grade from Sigma-Aldrich (St. Louis, MO), Fisher Scientific (Pittsburgh, PA), VWR (Radnor, PA)
or Invitrogen Life Technologies Inc (Carlsbad, CA). Details of the antibodies and concentrations

used are given in Table-1.

Human Endometriotic Cell Lines: Immortalized endometriotic epithelial cell line 12Z and
stromal cell line 22B used in this study were derived from active red peritoneal endometriosis
lesions during the proliferative phase of the menstrual cycle from woman suffering from
endometriosis for more than 8 years [37]. These 12Z and 22B cells share several phenotypic
and molecular characteristics of primary cultured endometriotic cells [37]. Accumulating
information from our and other laboratories indicate that 12Z and 22B cells are a potential model
system to study the progressive phase of endometriosis [10,37-39]. Importantly, xenograft of a
mixed population of these 12Z and 22B cells into the peritoneal cavity of immunocompromised
mice is able to proliferate, attach, invade, reorganize and establish peritoneal endometriosis-like
lesions and that histomorphology is similar to that of spontaneous peritoneal endometriosis in
women [10,40]. We have shown that 12Z and 22B cells express p-ERK1/2 and p-AKT proteins
at the basal level [10]. Therefore, inhibition of ERK1/2 and AKT is the best approach to
investigate the role of ERK1/2 and AKT interactive signaling in the pathogenesis of

endometriosis.

In Vitro Experiment-Pharmacologic Approach: These well-characterized 12Z and 22B cells
were cultured in DMEM/F12 without special steroid treatment containing 10% fetal bovine
serum (FBS) and penicillin (100 U/ml), streptomycin (100 pg/ml) and amphotericin-B 2.5 pg/ml
in a humidified 5% CO, and 95% air at 37°C as we described previously [10,38,39,41]. At 70-
80% confluency the cells were cultured in DMEM/F12 with 1% dextran-charcoal-treated fetal
bovine serum (DC-FBS) and treated with MEK1/2 inhibitor (U0126) to suppress ERK1/2
pathway and/or PI3K inhibitor (LY294002) to suppress AKT pathway in vehicle (1% DMSO) in

plain media for 24h.
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In Vitro Experiment- siRNA Approach: SiRNA experiments were performed as we reported
[10]. Briefly, 12Z and 22B cells (3.0 x10°/well) were cultured as described above in six-well
tissue culture plates. At 70-80% confluency, cells were used for ERK1 or AKT knock-down
experiments using SMARTpool-ON-TARGETplus siRNA (ERK1 siRNA, L-003555-00-0005 and
AKT1 siRNA, L-003000-00-0005) delivered by DharmaFect-1 as we described previously [10]
and per manufacturer’s instructions (Dharmacon Inc, Lafayette, CO). As an internal control,
scrambled siRNA was used. Fluorescence labeled siGLO RISC-free siRNA was transfected
separately and transfection efficiency was estimated using a fluorescence microscope.
Transfection efficiency more than 80% was considered as optimal conditions for further
experiments. Efficiency of siRNA on silencing of ERK-1 and AKT genes was assessed by qRT-
PCR 48 h post-transfection. Knock-down efficiency was 70-80% in both 12Z and 22B cells.

Cell Proliferation Assay: 12Z and 22B cells (1x10°/well) were cultured in DMEM/F12 with 10%
FBS in six-well plates. At 70-80% confluency the cells were cultured in DMEM/F12 with 1%
dextran charcoal treated fetal bovine serum (DC-FBS) for 24h. In dose-response experiment,
the cells were treated with different doses (0, 1, 10, 20, 50, 75, and 100 uM in vehicle 1%
DMSO) for MEK1/2 inhibitor U01260 to suppress ERK1/2 pathway or PI3K inhibitor LY294002
to suppress AKT pathway for 24h in plain media. Based on this dose-response experiments, the
optimal dose for each inhibitor was selected and the cells were treated with MEK1/2 inhibitor
U0126 (20um), PI3K inhibitor (LY294002, 50um) or combination of both for 24h. These
inhibitors competitively bind and inhibit their functions [42-44]. For siRNA study, after 24 h post-
transfection of siRNA the medium was replaced and the cells were cultured in plain media which
was considered as time 0 h, and cell proliferation was estimated at 24 h as described above.
Number of cells were counted using a Coulter counter [45,46]. The total number of cells in
control considered as 100%. Data were expressed as mean + SEM of three independent

experiments conducted in duplicate.

Cell Cycle Analysis: 12Z and 22B cells were cultured in T-75 flasks and treated as described
above. The cells were first fixed in 1% buffered paraformaldehyde saline for 15 min on ice, and
then fixed in ice cold 70% ethanol and kept at -20°C for 30 min. The cells were rehydrated in

PBS for 15 min, treated with DNase-free RNAse (100 ug/ml), and stained with propidium iodide
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(25 pg/ml) in staining buffer (100 mM Tris, PH 7.4, 150 mM NaCl, 1 mM CacCl,, 0.5 mM MgCI2,
0.1% Nonidet P-40) for 30 min at room temperature. The number of cells distributed in G1, S,
G2-M phases of cell cycle was determined by fluorescence-activated cell sorting (FACS)
analysis of propidium-stained cells distribution using a flowcytometer (FACSCaliber, Becton
Dickinson, San Jose, CA) and ModFit LT program (Verity Software House) and as we reported
[46]. Data were expressed as mean + SEM of three independent experiments.

Cell Apoptosis, Terminal deoxynucleotide transferase dUTP nick end labeling (TUNEL)
assay and Flowcytometry: The cells were harvested, mixed together, and resuspended at the
concentrations of 1x10° cells/ml. Nicks in the DNA were determined by terminal
deoxynucleotidyl transferase (TdT) and 5-bromo-2'-deoxyuridine 5'-triphosphate (BrdUTP)
labeling using APO-BrdU TUNEL Assay Kit. Detection of BrdU incorporation at DNA break sites
was achieved through Alexa Fluor 488 dye—labeled anti-BrdU antibody. Numbers of apoptotic
cells were analyzed by a flowcytometer (FACSCaliber, Becton Dickinson, San Jose, CA) using

Cell Quest software as we reported [10].

Protein Extraction and Western Blot: Total protein was isolated from endometriotic cells and
immunoblotting/western blotting was performed as we described previously [10,45,47]. Briefly,
the cells were harvested using 1% Trypsin-EDTA and pelleted. The cell lysates were sonicated
in sonication buffer which consisted of 20mM Tris-Hcl, 0.5mM EDTA, 100 uM DEDTC, 1%
Tween, 1 mM phenylmethylsulfonyl fluoride, and protease inhibitor cocktail tablets: complete
EDTA-free (1 tablet/50 ml) and PhosStop (1 tablet /10 ml). Sonication was performed using a
Microson ultrasonic cell disruptor (Microsonix Incorporated, Farmingdale, NY). Protein
concentration was determined using the Bradford method[48] and a Bio-Rad Protein Assay kit.
Protein samples (75 pg) were resolved using 7.5%, 10% or 12.5% SDS-PAGE.
Chemiluminescent substrate was applied according to the manufacturer's instructions (Pierce
Biotechnology). The blots were exposed to Blue X-Ray film and densitometry of autoradiograms
was performed using an Alpha Imager (Alpha Innotech Corporation, San Leandro, CA).

Immunoprecipitation: 12Z and 22B cells were cultured, treated, harvested, and then total cell
lysates were prepared as described above. Total cell lysate (1 mg) was precleared by
incubating with appropriate preclearing matrix (Santa Cruz Biotechnology) for 30 min at 4°C.
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The precleared cell lysate was incubated with primary antibody overnight at 4°C at the
recommended concentrations given by manufacturers (Cell Signaling Technology and/or Santa
Cruz Biotechnology), and then further incubated with ImmunoCruz immunoprecipitation optima
(Santa Cruz Biotechnology) overnight at 4°C and as we reported [10]. Protein-antibody
complexes were precipitated using protocols provided by Santa Cruz Biotechnology and/or Cell

Signaling Technology.

Xenograft Rag2y(c) Mouse Model of Endometriosis of Human Origin: The human
endometriotic epithelial cells 12Z were transduced with lentivirus containing NEF-Green plasmid
and endometriotic stromal 22B cells was transduced with lentivirus NEF-Red and stable 12Z-
GFP and 22B-RFP cell lines were established as we reported [40]. The 12Z-GFP and 22B-RFP
cells were cultured as described above. At 70% confluency, the 12Z-GFP and 22B-RFP cells

were processed for xenograft as we described previously [40].

All procedures were approved by the Institutional Animal Care and Use Committee at Texas
A&M University. Rag2y(c) mice were purchased (Taconic Biosciences, Inc) and then breeding
colony was established, housed, and maintained at Laboratory Animal Resources and
Research (LARR), Texas A&M University as described above. Rag2y(c) mice (~22-25 gm,
ovary intact, cyclic, not treated with estradiol) were included in the study. At 8 weeks of age,
peritoneal endometriosis was induced by xenograft of 12Z-GFP (3x10°) and stromal cells 22B-
RFP(0.5x10°%) were mixed with 250ul of DMEM/F12 and 50pl of matrigel as we reported [40].
Day of xenograft was considered as day 1. The experimental mice were treated with MEK1/2
inhibitor U0126 to suppress ERK1/2 pathway, PI3K inhibitor LY294002 to suppress AKT
pathway or combination of both treatments to suppress ERK1/2 and AKT pathways in vehicle
(5% DMSO in 300ul sterile PBS, i.p) from days 15-28 of xenograft. Mice were necropsied on
days 29-30 on E2-phase, based on vaginal cytology.

In Study-1, Groupl control mice (n=3) were treated with vehicle (5% DMSO in 300ul sterile
PBS, i.p); Group-2 mice (n=3) were treated with MEK1/2 inhibitor U0126 (25mg/kg) in vehicle.
Group-3 mice (n=3) were treated with MEK1/2 inhibitor U0126 (50mg/kg) in vehicle. Group-4
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mice (n=3) were treated PI3K inhibitor LY294002 (25mg/kg) in vehicle. Group-5 mice (n=3)
were treated with PI3K inhibitor LY294002 (50mg/kg) in vehicle.

In Study-2, Group-1 control mice (n=6) were treated with vehicle. Group-2 mice (n=6) were
treated with MEK1/2 inhibitor U0126 (25mg/kg) and PI3K inhibitor LY294002 (25mg/kg) in
vehicle. Group-3 mice (n=6) were treated with U0126 (50mg/kg) and LY294002 (50mg/kg) in

vehicle.

Fluorescence Stereo Microscopy Imaging and Evaluation of Endometriotic Lesions:
Rag2g(c) experimental endometriosis mice were euthanized and blood collected as we
described previously [40]. Then, the entire abdominal cavity was examined under fluorescence
zoomstereo dissection microscope to determine the dissemination of 12Z-GFP and 22B-RFP
clusters of endometriotic lesions. The fluorescent endometriotic lesions were recorded, tracked,
and images captured under GFP and RFP filters at 1X magnification. Intensity of GFP and RFP
in each image (clusters of lesions) was quantified using Image-Pro Plus as described below and
expressed in numerical data as we reported [40]. The Nikon AZ100 Fluorescence
stereomicroscope is equipped with AZ100 Plan Fluor Objectives 1x, 2x and 5x, fluorescent light
source-excite series 120 PC, Nikon DS QiMc digital camera, and Nikon NIS Elements BR 3.22
software. All the lesions were dissected under the fluorescence zoomstereo dissection
microscope and care was taken not to include the underlying peritoneal tissues. Grossly, the
experimental endometriotic lesions were measured in two dimensions, the larger denoted ‘a’
and the smaller denoted ‘b’, and total volume, calculated using the formula V= axb?x0.5 [40].
Portions of endometriotic lesions were embedded in Optimal Cutting Temperature (OCT)

compound and cryopreserved.

Immunocytochemistry (ICC): Immunocytochemistry was performed according the protocol
provided by Cell Signaling Technology (Danvers, MA) and as we reported [40]. The
endometriotic lesion cryosections (10um) were fixed in 2% PFA for 15 min at room temperature
and followed by fixed in methanol for 10 min at 4°C. The tissue sections were incubated with
primary antibodies for overnight at 4°C. The sections were further incubated with Alexa Fluor
488 and Alexa Fluor 594 conjugated secondary antibodies for 60 min at room temperature.

Nuclei were stained with DAPI (ProLong Gold antifade, Molecular Probes). For the negative
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control, serum or IgG from respective species with reference to the primary antibody at the

respective dilution was used.

Digital images were captured using a Zeiss Axioplan 2 Research Microscope (Carl Zeiss,
Thornwood, NY) with an Axiocam HR digital color camera. The intensity of staining for each
protein was quantified using Image-Pro Plus 6.3 image processing and analysis software
according to the manufacturer’s instructions (Media Cybernetics, Inc; Bethesda, MD). The
detailed methods for quantification are given in the instruction guide: “The Image-Pro Plus: The
proven solution for image analysis.” In brief: a minimum 3 images of at 400X magnification
were captured randomly without hot-spot bias in each tissue section per animal. The integrated
optical intensity (I0OD) of immunostaining was quantified under RGB mode. Numerical data
were expressed as least square mean + SEM. This technique is more quantitative than
conventional blind scoring systems and the validity of quantification was reported previously by

our group [40].

Statistical Analyses: Statistical analyses were performed using general linear models of
Statistical Analysis System (SAS, Cary, NC). Effects of inhibition of ERK1/2 and AKT pathways
on expression levels of different proteins in 12Z and 22B cells in vitro, growth of endometriotic
lesions, and relative expression of proteins in glandular epithelial cells and stromal cells of
endometriotic lesions were analyzed by one-way analysis of variance (ANOVA) followed by
Tukey-Kramer HSD test. The numerical data are expressed as mean + SEM. Statistical

significance was considered at P<0.05.

RESULTS

ERK1/2 and AKT Interactive Cell Signaling Pathways:

In order to understand the dual role of ERK1/2 and AKT pathways in the pathogenesis of

endometriosis, we first determined their interactive cell signaling pathways (Fig-1).
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p-ERK1/2: Inhibition of ERK1/2 pathway decreased (p<0.05) the expression of p-ERK1/2
protein in epithelial cells and stromal cells. Inhibition of AKT pathway did not decrease the
expression of p-ERK1/2 protein in epithelial cells but decreased (p<0.05) its expression in
stromal cells. Combined inhibition of both pathways highly decreased (p<0.05) the expression of

p-ERK1/2 protein in both epithelial cells and stromal cells.

p-AKT: Inhibition of ERK1/2 pathway did not decrease the expression of p-AKT protein in
epithelial cells and stromal cells. Inhibition of AKT pathway decreased the expression of p-AKT
protein in epithelial cells and stromal cells. Combined inhibition of both pathways highly

decreased (p<0.05) the expression of p-AKT protein in epithelial cells but not in stromal cells.

p-p90RSK: Inhibition of ERK1/2 pathway decreased (p<0.05) the expression of p-p90RSK
protein in epithelial cells and stromal cells. Inhibition of AKT did not decrease the expression of
p-p90RSK protein in epithelial cells; in contrast, decreased (p<0.05) its expression in stromal
cells. Combined inhibition of ERK1/2 and AKT pathways highly decreased (p<0.05) the

expression of p-p90RSK protein in stromal cells but not in epithelial cells.

p-p70S6K: Inhibition of ERK1/2, AKT or combined inhibition of both pathways decreased

(p<0.05) the expression of p-p70S6K protein in epithelial cells as well as in stromal cells.

p-mTOR1: Inhibition of ERK1/2 pathway did not decrease the expression of p-mTORL1 protein
in epithelial cells; in contrast, decreased (p<0.05) its expression in stromal cells. Inhibition of
AKT decreased (p<0.05) the expression of p-mTOR1 protein in both epithelial cells and stromal
cells. Combined inhibition of ERK1/2 and AKT pathways decreased (p<0.05) the expression of
p-mTOR1 protein in both epithelial cells and stromal cells.

B-Catenin: Inhibition of ERK1/2, AKT or combination of both pathways decreased (p<0.05) the

expression of B-Catenin protein in epithelial cells as well as in stromal cells.

NFkB-p65: Inhibition of ERK1/2 pathway increased (p<0.05) the expression of NFkB-p65
protein in epithelial cells, in contrast; decreased (p<0.05) its expression in stromal cells.
Inhibition of AKT pathways decreased (p<0.05) the expression of NFkB-p65 protein in both
epithelial cells and stromal cells. Combined inhibition of ERK1/2 and AKT pathways decreased

(p<0.05) the expression of NFkB-p65 protein in both epithelial cells and stromal cells.
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Analyses of these multiple downstream signaling proteins indicate the existence compensatory
interactions between ERK1/2 and AKT pathways in an epithelial-stromal cell specific manner in

human endometriotic stromal cells.

ERK1/2 and AKT Interactive Transcriptional Factors:

In order to further understand downstream signaling mechanisms we determined the dual

inhibitory effects of ERK1/2 and AKT pathways on regulation of transcriptional factors (Fig-2).

c-Jun: Inhibition of ERK1/2 pathway did not decrease the expression of c-Jun protein in
epithelial cells, in contrast; decreased (p<0.05) its expression in stromal cells. Inhibition of AKT
pathway decreased (p<0.05) the expression of c-Jun protein in epithelial cells and stromal cells.
Combined inhibition of ERK1/2 and AKT pathways decreased (p<0.05) the expression of ¢c-Jun

protein in epithelial cells and stromal cells.

c-FOS: Inhibition of ERK1/2 decreased (p<0.05) the expression of c-FOS protein in epithelial
cells and stromal cells. Inhibition of AKT pathway did not decrease the expression of c-FOS
protein in epithelial cells but decreased (p<0.05) its expression in stromal cells. Combined
inhibition of ERK1/2 and AKT pathways decreased (p<0.05) the expression of c-FOS protein in

both epithelial cells and stromal cells.

Spl: Inhibition of ERK1/2 pathway did not decrease the expression of Spl protein in epithelial
cells and stromal cells. Inhibition of AKT pathway decreased (p<0.05) the expression of Spl
protein in both epithelial cells and stromal cells. Combined inhibition of ERK1/2 and AKT
pathways highly decreased (p<0.05) the expression of Spl protein in both epithelial cells and

stromal cells.

p-CREB: Inhibition of ERK1/2 pathway did not decrease the expression of p-CREB protein in
epithelial cells but decreased (p<0.05) its expression in stromal cells. Inhibition of AKT pathway
decreased (p<0.05) the expression of p-CREB protein in both epithelial cells and stromal cells.
Combined inhibition of ERK1/2 and AKT pathways highly decreased (p<0.05) the expression of

p-CREB protein in both epithelial cells and stromal cells.
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ETS1: Inhibition of ERK1/2 pathway decreased (p<0.05) the expression of ETS1 protein,
inhibition of AKT pathway did not decrease its expression epithelial cells and stromal cells.
Combined inhibition ERK1/2 and AKT pathways decreased (p<0.05) the expression of ETS1

protein epithelial cells and stromal cells.

EGR-1: Inhibition of ERK1/2 pathway decreased (p<0.05) the expression of EGR-1 protein in
epithelial cells but did not decrease its expression in stromal cells. Inhibition of AKT did not
decrease the expression of EGR-1 protein in epithelial cells but decreased (p<0.05) its
expression in stromal cells. Combined inhibition of ERK1/2 and AKT pathways decreased

(p<0.05) the expression of EGR-1 protein in both epithelial cells and stromal cells.

These results together indicate that dual inhibition of ERK1/2 and AKT pathways regulates
multiple transcriptional factors in an epithelial-stromal cell specific and pathway-dependent
pathway in human endometrioitc cells.

Cell Proliferation and Cell Cycle Regulation

We determined the dual inhibitory effects of ERK1/2 and AKT interactive pathways on
proliferation of human endometriotic epithelial cells and stromal cells (Fig-3). Pharmacological
inhibition of ERK1/2 or AKT pathways dose-dependently (p<0.05) decreased the proliferation
both endometriotic epithelial cells 12Z (Panel-1A) and stromal cells 22B (Panel-1B). Inhibition
of ERK1/2, AKT or combination of both pathways decreased (p<0.05) proliferation of
endometriotic epithelial cells up to 20%, 34% or 68% respectively compared to control (Panel-
2A). Equally, pharmacological inhibition of ERK1/2, AKT or combination of both pathways
decreased (p<0.05) proliferation of endometriotic stromal cells up to 32%, 49%, and 74%
respectively compared to control (Panel-2A). Similarly, silencing of ERK1, AKT or both genes
using siRNA decreased (p<0.05) proliferation of endometriotic epithelial cells up to 22%, 23% or
48% and proliferation of endometriotic stromal cells up to 22%, 29%, and 53% respectively
compared to control (Panel-2B). In both epithelial cells and stromal cells, combined inhibition of
ERK1/2 and AKT pathways caused higher (p<0.05) inhibitory effects on cell proliferation
compared to inhibition of either ERK1/2 or AKT pathway alone.
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Next, we analyzed progression of human endometriotic cells through cell cycle. Results (Fig-4)
indicated that combined inhibition of ERK1/2 and AKT pathways arrested (p<0.05) the
progression of endometriotic epithelial cells and stromal cells in the G1 phase and
concomitantly decreased (p<0.05) progression of these cells through S phase and G2 phase of
the cell cycle compared to inhibition of either ERK1/2 or AKT pathway individually. These results
indicate that dual inhibition of ERK1/2 and AKT pathways highly (p<0.05) affects the
progression of human endometriotic cells through G1-S and G2-M phases of the cell cycle
compared to inhibition of a single pathway.

In order to understand the cell cycle dysregulation, we further determined the regulation of cell

cycle regulatory proteins in endometrioitc epithelial cells and stromal cells (Fig-5).

CDK1: Inhibition of ERK1/2, AKT or combination of both pathways decreased (p<0.05) the

expression of CDK1 protein in epithelial cells and stromal cells.

CDK2: Inhibition of ERK1/2 pathway did not decrease the expression of CDK2 protein in
epithelial cells or stromal cells. Inhibition of AKT pathway decreased (p<0.05) the expression of
CDK2 protein in epithelial cells but not in stromal cells. Combined inhibition of ERK1/2 and AKT
pathways decreased (p<0.05) the expression of CDK2 protein in epithelial cells but not in
stromal cells.

CDK4: Inhibition of ERK1/2 pathway did not decrease the expression of CDK4 protein in
epithelial cells but decreased (p<0.05) its expression in stromal cells. Inhibition of AKT pathway
decreased (p<0.05) the expression of CDK4 protein in epithelial cells as well as in stromal cells.
Combined inhibition of ERK1/2 and AKT pathways highly decreased (p<0.05) the expression of
CDK2 protein in stromal cells but not in epithelial cells.

CDKG®: Inhibition of ERK1/2, AKT or combination of both pathways decreased (p<0.05) the

expression of CDK6 protein in epithelial cells and stromal cells.

Cyclins A, B1, D1, E2: Inhibition of ERK1/2, AKT or combination of both pathways decreased
(p<0.05) the expression of cyclin A, cyclin B1, cyclin D1, and cyclin E2 proteins in epithelial cells
and stromal cells; whereas, it did not decrease the expression of cyclin D2 protein in both

epithelial cells and stromal cells.
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Cyclin D3: Inhibition of ERK1/2 pathway decreased (p<0.05) the expression of cyclin D3
protein in epithelial cells and stromal cells. Inhibition of AKT did not decrease the expression of
cyclin D3 protein in epithelial cells but decreased (p<0.05) its expression in stromal cells.
Combined inhibition of ERK1/2 and AKT pathways decreased (p<0.05) the expression of cyclin

D3 protein in both epithelial cells as well as stromal cells.

These results indicate that inhibition of ERK1/2 and AKT pathways dysregulate cell cycle
regulatory proteins involved in G1-S and G2-M transition in an epithelial and stromal cell-

specific and pathway-dependent pattern.

Cell Apoptosis and Intrinsic Apoptotic Pathways

It is evident from cell cycle analyses (Fig-4) that inhibition ERK1/2 and AKT pathways increased
(p<0.05) the accumulation of cells in sub GO/G1 phase of the cell cycle, suggesting transition of
cells to apoptotic phase. Therefore, we determined the dual inhibitory effects of ERK1/2 and
AKT pathways on the cells that undergo extensive DNA degradation during the late stages of
apoptosis by TUNEL assay. Results (Fig-6) indicated that inhibition of ERK1/2, AKT, or
combination of ERK1/2 and AKT pathways induced (p<0.05) apoptosis of endometriotic
epithelial cells 12Z (17%, 20%, 65% respectively) and stromal cells 22B (16%, 29%, and
72%respectively). Combined inhibition of ERK1/2 and AKT pathways induced higher (p<0.05)
apoptosis compared to inhibition of either ERK1/2 or AKT pathway alone in both epithelial cells

and stromal cells.

In order to understand the molecular and cellular mechanisms, we determined the underlying

apoptotic signaling pathways in human endometrioitc cells. (Fig-7).

Bcl2: Inhibition of ERK1/2, AKT or combination of both pathways decreased (p<0.05) the
expression of Bcl2 protein in an epithelial cells and stromal cells-specific and pathway-

dependent pattern.

Bcl-XL: Inhibition of ERK1/2 pathway decreased (p<0.05) the expression of Bcl-XL protein in
epithelial cells and stromal cells. Inhibition of AKT did not decrease the expression of Bcl-XL
protein in epithelial cells and stromal cells. Combined inhibition of ERK1/2 and AKT pathways

decreased (p<0.05) the expression of Bcl-XL protein in epithelial cells but not in stromal cells.



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

16

XIAP: Inhibition of ERK1/2, AKT or combination of both pathways decreased (p<0.05) the
expression of XIAP protein in an epithelial cells and stromal cells-specific and pathway-

dependent pattern.

pBad112: Inhibition of ERK1/2 pathway decreased (p<0.05) the expression of p-Bad112 protein
in epithelial cells and stromal cells. Inhibition of AKT pathway (p<0.05) did not affect expression
of p-Badl12 protein in both epithelial cells and stromal cell types. Combined inhibition of
ERK1/2 and AKT pathways highly decreased (p<0.05) the expression of p-Bad112 protein in

stromal cells but not in epithelial cells.

pBad136: Inhibition of ERK1/2 pathway did not affect expression of p-Badl136 protein in
epithelial and stromal cells. Inhibition of AKT pathway decreased (p<0.05) the expression of p-
Bad136 protein in both epithelial cells and stromal cells. Combined inhibition of ERK1/2 and
AKT pathways highly decreased (p<0.05) the expression of p-Bad136 protein in epithelial cells

and stromal cells.

Bad: Inhibition of ERK1/2 did not modulate the expression of total-Bad protein in both epithelial
cells and stromal cells. In contrast, inhibition of AKT pathway increased (p<0.05) the expression
of total-Bad protein in epithelial cells but not in stromal cells. Combined inhibition of ERK1/2 and
AKT pathways did not show any additional inhibitory effects on expression of total-Bad protein

in both epithelial cells and stromal cell types.

Bax: Inhibition of ERK1/2, AKT or combination of both pathways increased (p<0.05) the

expression of total-Bax protein in epithelial cells and stromal cells.

Cl-Capase-3: Inhibition of ERK1/2 pathway cleaved (p<0.05) caspase-3 protein in epithelial
cells but not in stromal cells. Inhibition of AKT pathway cleaved (p<0.05) caspase-3 protein in
both epithelial cells and stromal cells. Combined inhibition of ERK1/2 and AKT pathways
showed higher (p<0.05) effects on cleavage of caspase-3 protein in both epithelial cells and
stromal cells.
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CI-PARP: Inhibition of ERK1/2 or AKT pathway cleaved (p<0.05) PARP protein in epithelial
cells and stromal cells. Combined inhibition of ERK1/2 and AKT pathways highly (p<0.05)

cleaved PARP protein in both epithelial cells and stromal cells.

ERK1/2 or AKT and Bax or Bad interactions: We further determined interactions between
ERK1/2-p90RSK and AKT-p70S6K and proapoptotic proteins Bax and Bad. Results indicated
that combined inhibition of ERK1/2 and AKT pathways decreased (p<0.05) interactions between
Bad and p-p90RSK and Bad and p-p70S6K proteins in both epithelial cells and stromal cells.
Similarly, combined inhibition of ERK1/2 and AKT pathways decreased (p<0.05) interactions
between Bax and p-p90RSK and Bax and p-p70S6K proteins in both epithelial cells and stromal

cells.

These results together indicate that dual inhibition of ERK1/2 and AKT pathways activates
intrinsic apoptosis mechanisms in an epithelial cells and stromal cell-specific and pathway-

dependent pathway in human endometrioitc cells.

Experimental Endometriosis In vivo: We determined the effects of inhibition of ERK1/2, AKT
or ERK1/2 and AKT pathways on growth and survival of endometriotic lesions in xenograft mice
of model of experimental endometriosis in vivo (Fig-8). We first determined the effects of
inhibition of ERK1/2 or AKT pathways. Results (Panel-1) indicated that inhibition of either
pathway did not decrease the growth of endometrioitc lesions. By contrast, dual inhibition of
ERK1/2 and AKT pathways decreased (p<0.05) total number (Panel-2A) and total volume
(Panel-2B) of endometriotic lesions in a dose dependent manner. It decreased ~20% of
endometriotic lesions at 25mg/kg, whereas, it decreased ~70% of endometriotic lesions at
50mg/kg. In addition, fluorescent microscopy cell-specific analyses (Panel-3, C1-C3) indicated
that dual inhibition of ERK1/2 and AKT pathways decreased the quantity of epithelial cells (12-
GFP) and stromal cells (22B-RFP) in the endometriotic lesions in vivo. Immunocytochemistry
analyses (Panel-4, D-H) indicated that dual inhibition of ERK1/2 and AKT pathways decreased
the expression of pERK1/2 and pAKT proteins. In addition, it increased the expression of
apoptosis marker protein cl-Caspase-3 protein and concomitantly decreased the expression of
cell proliferation marker protein ki67 in both epithelial cells (12-GFP) and stromal cells (22B-
RFP) of the endometriotic lesions in vivo. Biochemical analyses (Panel-5) indicated that
experimental mice treated with ER1/2 and AKT inhibitors for 2 weeks did not develop toxicity on

kidney, heart, and liver functions. These results together indicate that dual inhibition of ERK1/2
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and AKT pathways decreased proliferation and induced apoptosis of both epithelial cells and
stromal cells of the endometriotic lesions.

DISCUSSION

Interactions among survival, antiapoptotic, and proapoptotic pathways determine survival or
apoptosis of the cells. The well-studied signaling pathways that govern survival of cells are Ras-
Raf-ERK1/2-p90RSK [16,17,49-51], PI3K-AKT-p70S6K [17,19,50,51], IkBa-NFkB [20], and
Wnt-B-catenin pathways [21-23]. In the present study, we determined downstream signaling
modules which are coordinately regulated by ERK1/2 and AKT pathways in human
endometriotic cells. Results indicate that inhibition of ERK1/2 pathway decreases the
expression of p-ERK1/2 protein in endometriotic epithelial cells and decreases the expression of
p-ERK1/2 and p-AKT proteins in endometriotic stromal cells. Inhibition of AKT pathway
decreases the expression of p-AKT protein but not p-ERK1/2 protein in endometriotic epithelial
cells and stromal cells. Notably, inhibition of ERK1/2 pathway alone represses the ERK1/2-
pP90RSK, ERK1/2-p70RSK, and ERK1/2-3-Catenin but not the ERK1/2-mTOR1 or ERK1/2-
NFkBp65 signaling modules in endometriotic epithelial cells; in contrast, it represses all these
signaling modules in endometriotic stromal cells. Inhibition of AKT pathway alone represses the
AKT-p70RSK, AKT-mTOR1, AKT-B-Catenin, AKT-NFkBp65 but not the AKT-p90RSK signaling
modules in endometriotic epithelial cells; in contrast, it represses all these signaling modules in
endometriotic stromal cells. Importantly, combined inhibition of ERK1/2 and AKT pathways
represses the ERK1/2+AKT-p90RSK, ERK1/2+AKT-p70RSK, ERK1/2+AKT-B-Catenin,
ERK1/2+AKT-mTOR1, and ERK1/2+AKT-NFkBp65 signaling modules in both endometriotic
epithelial cells and stromal cells. Inhibition of ERK1/2 pathway decreases the expression of c-
Fos, ETS-1, and EGR-1 proteins in endometriotic epithelial cells and decreases the expression
of c-Jun, p-CREB, and ETS-1 proteins in endometriotic stromal cells. Inhibition of AKT
decreases the expression of c-Jun, SP1, p-CREB, ETS-1 proteins in endometriotic epithelial
cells and decreases the expression of c-Jun, C-Fos, Spl, p-CREB, and EGR-1 proteins in
endometriotic stromal cells. Importantly, combined inhibition of both ERK1/2 and AKT pathways
decreases the expression of all these transcriptional factors in endometriotic epithelial cells and
stromal cells. These results clearly indicate that ERK1/2 and AKT pathways are interacting and
coordinately regulate multiple downstream signaling modules in an epithelial cells and stromal
cell-specific and pathway-dependent ways in human endometriotic cells. Our new findings
together indicate the existence of compensatory mechanisms between ERK1/2 and AKT
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pathways on regulation of down-stream signaling pathways, and strongly point out a need for
dual inhibition of these two pathways in endometriosis.

We determined the effects of inhibition of ERK1/2 and AKT pathways on proliferation of human
endometrioitc cells and the underlying molecular mechanisms. Results indicate that the
combined inhibition of both ERK1/2 and AKT pathways causes higher inhibitory effects on
proliferation of epithelial cells and stromal cells compared to inhibition of either ERK1/2 or AKT
pathway. In support of this, the cell cycle analyses indicate that combined inhibition of ERK1/2
and AKT pathways decreases the progression of epithelial cells and stromal cells through G1-S
and G2-M check-points. Next, we examined whether the cell cycle arrest is associated with
regulation of respective CDKs and cyclins. Selective CDK/cyclin complexes are activated at
different phases/check-points of the cell cycle [52-55]. Cyclin D1/D2/D3 and CDK4/6 complexes
are activated in early to mid G1-phase; cyclin E/CDK2 complexes are required for the G1/S
transition; cyclin A/ICDK2 complex is essential for the progression of S-phase/DNA synthesis;
and cyclin A-B/CDK1 is necessary for G2-M transition [52-55]. Results of the present study
indicate that downregulation of cyclins and CDK complexes is responsible for deregulated
progression of endometriotic epithelial cells and stromal cells through G1-S and G2-M check-
points. In cyclin D1/D2/D3 and CDK4/6 complexes, expression of cyclin D2 protein is not
decreased in contrast expression of D2, D3, and CDK4 and CDK6 proteins are decreased in
both epithelial cells and stromal cells. It suggests suppression of D1 and D3 along with CDK4/6
is sufficient to decrease the progression of human endometriotic cells through G1-phase of the
cell cycle. In cyclin E/CDK2 complexes, expression of CDK2 is not decreased but expression of
cyclin E2 is decreased in stromal cells, suggesting suppression of cyclin E2 is sufficient to
regulate the progression of human endometriotic cells through G1-S transition. These results
together indicate that inhibition of ERK1/2 and AKT pathways suppresses the proliferation of
human endometriotic epithelial cells and stromal cells through dysregulated cell cycle
mechanisms. Evidently, these results support the existence of compensatory mechanisms
between ERK1/2 and AKT pathways and confirm the need for dual inhibition of both ERK1/2
and AKT pathways to suppress proliferation of human endometriotic epithelial cells and stromal
cells.

We determined the effects of inhibition of ERK1/2 and AKT pathways on apoptosis or survival of

human endometrioitc cells and underlying molecular mechanisms. Members of the Bcl-2 family
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play pivotal roles in cell survival or apoptosis [56-58]. The Bcl-2 family includes anti-apoptotic
(Bcl-2 and Bcl-XL) and pro-apoptotic (Bad and Bax) members [56-58]. Bcl-2 and Bcl-XL proteins
are localized exclusively in the mitochondria and control its potential to prevent the release of
cytochrome C into the cytosol [56-58]. In addition, activation of NFKB and [-catenin signaling
pathways increases expression of Bcl2 and Bcl-XL proteins in the mitochondria [20,22]. Results
of the present study indicate that inhibition of ERK1/2 pathway decreases the expression of
Bcl2, Bcl-XL, and XIAP proteins in endometriotic epithelial cells and stromal cells. Inhibition of
AKT pathway decreases the expression of Bcl2 and XIAP proteins but not Bcl-XL protein in
endometriotic epithelial cells and stromal cells. Combined inhibition of both pathways decease
the expression of Bcl2, Bcl-XL, and XIAP proteins in endometriotic epithelial cells and decrease
the expression of Bcl2 and XIAP but not Bcl-XL proteins in endometriotic stromal cells. These
results indicate that Bcl2, Bcl-XL, XIAP proteins are the downstream targets for ERK1/2
pathway; whereas, Bcl2 and XIAP but not Bcl-XL proteins are down-stream targets for AKT

pathway in human endometriotic epithelial cells and stromal cells.

Activation of Ras-Raf-ERK1/2 and PI3K-AKT signaling modules phosphorylates/inactivates Bad
at serine 112 or 136 [17,19,50,51] and activation of PISBK-AKT phosphorylates/inactivates Bax at
serine 184 [59-62]. Phosphorylation of Bad and Bax at these specific sites sequestrates them in
the cytosol with 14-3-3 proteins, prevents translocation of Bad and Bax proteins from the cytosol
into the mitochondria and interactions with antiapoptotic proteins Bcl-2 and Bcl-XL, and thus
inhibits apoptosis [23,63,64]. Apoptotic stimuli dephosphorylate Bad and Bax, dissociate them
from 14-3-3 proteins, translocate them from the cytosol into the mitochondria, mediate
interactions between Bad/Bax and Bcl-2/Bcl-xL, and facilitate release of cytochrome C from the
mitochondria into the cytosol [23,63-65]. Results of the present study indicate that inhibition of
ERK1/2 pathway decreases the expression of p-Bad112 protein but not pBadl36 protein; in
contrast, inhibition of AKT pathway decreases the expression of p-Bad136 protein but not p-
Bad112 protein in endometriotic epithelial cells and stromal cells. These results indicate that p-
Bad112 is a downstream target for ERK1/2 pathway and p-Bad136 is a down-stream target for
AKT pathways in human endometriotic epithelial cells and stromal cells. Inhibition of ERK1/2
pathway does not increase t-Bad protein in both epithelial cells and stromal cells; whereas,
inhibition of AKT pathway does increase expression of t-Bad protein in epithelial cells but not in
stromal cells. These results together indicate that inhibition ERK1/2 pathways increases
phosphorylation of Bad protein at serine 112, and inhibition of AKT increases phosphorylation of

Bad protein at serine 136 in both epithelial cells and stromal cells. Importantly, inhibition of
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ERK1/2, AKT, or combination both pathways increases the expression of t-Bax protein
endometrioitc epithelial cells and stromal cells. These results together indicate that ERK1/2 and
AKT pathways targets Bad and Bax proteins in human endometriotic epithelial cells and stromal

cells.

Release of cytochrome C from the mitochondria into the cytosol activates caspase-3 which in
turn activates nuclear PARP and other proteins that are required to complete programmed cell
death [23,63-65]. Results of the present study indicate that inhibition of ERK1/2 or AKT
pathways cleaves or activates caspase-3 and PARP proteins, and combined inhibition of both
pathways highly cleaves caspase-3 and PARP proteins to a greater degree in endometriotic
epithelial cells and stromal cells. These result together indicate that ERK1/2 and AKT pathways
target caspase-3 and PARP proteins and thereby activates intrinsic apoptotic pathways in

human endometriotic epithelial cells and stromal cells.

Activation of ERK1/2-p90RSK [16,17,49-51] and AKT-p70S6K [17,19,50,51] signaling modules
phosphorylates Bad protein at serine 112 or 136 and activation of PISK-AKT phosphorylates
Bax protein at serine 184[59-62] in tumor cells. Results of the present study indicate that
combined inhibition of ERK1/2 or AKT pathways decreases the interactions between p-p90RSK
and Bad and Bax proteins, and decreases interaction between p-p70S6K and Bad and Bax
proteins in endometrioitc epithelial cells and stromal cells. These results evidently demonstrate
that Bad and Bax proteins are down-stream targets for p9ORSK and p70S6K in human

endometriotic epithelial cells and stromal cells.

Finally, we examined the role of ERK1/2 and AKT pathways in growth and survival of
endometrioitc lesions in vivo. Results indicate that combined inhibition of ERK1/2 and AKT
pathways decreases the growth and survival of endometriotic lesions dose-dependently up to
70% compared to inhibition of either ERK1/2 or AKT pathway. Combined inhibition of ERK1/2
and AKT decreases the expression of cell proliferation marker protein ki67 and increases the
expression of apoptosis marker protein caspase-3 in the epithelial cells and stromal cells of the
endometriotic lesions. Together, these results indicate that dual inhibition of ERK1/2 and AKT
pathways decrease the growth and survival of endometriotic lesions by decreasing proliferation
and inducing apoptosis of epithelial cells and stromal cells of the endometriotic lesions. In this

study, we treated the experimental mice for 2 weeks and no toxicity was observed on kidney,
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heart, and liver function at biochemical level. However, future studies with different doses for

longer duration is required.

We and others have shown that relative expressions of proteins involved in ERK1/2 and AKT
signaling including p-Bad112, p-Bad136, Bcl2, Bcl-XL, p-ERK1/2, p-AKT, p-IkB and B-catenin
are significantly higher in ectopic endometriotic tissues compared to eutopic endometrial tissues
in women [10] and animal models of endometriosis [27-29]. These results unequivocally indicate
that ERK1/2, AKT, NFKB or B-catenin pathways are highly activated in endometriosis. Results of
the present study clearly indicate that ERK1/2 and AKT pathways interactively regulate these
signaling proteins in human endometrioitc cells in an epithelial cells and stromal cell specific-
pattern in vitro and in vivo. Thus, it supports the role of hyperactivated ERK1/2 and AKT

interactive pathways in the pathogenesis of endometriosis.

Analysis of ERK1/2 and AKT pathways on growth and survival of human endometriotic cells has
revealed a complex organization of signaling modules which are regulated in an epithelial cells
and stromal cell-specific pattern, as shown in Fig-9. Our new results strongly indicate that ability
of human endometriotic cells to circumvent apoptosis signals is associated with increased
ERK1/2 and AKT interactive cell signaling pathways. Based on the results of the present study,
we propose molecular mechanisms by which dual inhibition of ERK1/2 and AKT pathways
suppresses growth and survival of human endometriotic cells, as illustrated in Fig-10. The
remarkable redundancy of signaling pathways that control interactions among proteins involved
in cell proliferation, cell cycle, cell survival, and cell apoptosis confirm the need for dual inhibition
of ERK1/2 and AKT pathways for the treatment of endometriosis mainly progressive stage of
the disease with red lesions. One of the limitations of the current study is that we used human
immortalized human endometiotic cell lines from peritoneal red lesions and
immunocompromised Rag2g(c) mice. Under clinical condition in women, the endometriotic
lesions are heterogeneous such as red, white, blue, and black phenotypes with different
biochemical properties. Therefore, more preclinical studies using heterogeneous lesional
phenotypes, different formats of ERK1/2 and AKT inhibitors, and additional mice and primate
models are required to move this research forward.
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In conclusion, results of the present study collectively indicate that inhibition of the ERK1/2 and
AKT pathways decreases the growth and survival of endometriotic cells and endometriotic
lesions through multiple mechanisms. Our new results: (i) establish interactive-compensatory
mechanisms between the ERK1/2 and AKT pathways in the pathogenesis of endometriosis; and
(i) indicate a need for dual inhibition of these two pathways for the treatment of endometriosis.
(iii) Dual inhibition of the ERK1/2 and AKT pathways could emerge as a potential non-steroidal

therapy for the treatment of endometriosis in women.

FIGURE LEGENDS

Fig-1: Effects of ERK1/2 and AKT pathways on intracellular signaling proteins in human
endometriotic cells: Panel-1A: Representative Immunoblot. Panel 1B: Histogram. The human
endometriotic epithelial cells 12Z and stromal cells 22B were treated with MEK1/2 inhibitor
(U0126, 20um) to suppress ERK1/2 pathway or PI3K inhibitor (LY294002, 50um) to suppress
AKT pathway for 24h. Expression of important downstream signaling proteins were analyzed by
western blot. B-actin protein was measured as an internal control. The densitometry of
autoradiograms was performed using an Alpha Imager. Data expressed in integrated density
value (IDV). *- control vs. treatment, p<0.05, n=3. See Materials and Method section for

additional experimental details.

Fig-2: Effects of ERK1/2 and AKT pathways on regulation of transcriptional factors in
human endometriotic cells: Panel-1A: Representative Immunoblot. Panel 1B: Histogram.
The human endometriotic epithelial cells 12Z and stromal cells 22B were treated with MEK1/2
inhibitor (U0126, 20um) to suppress ERK1/2 pathway or PI3K inhibitor (LY294002, 50um) to
suppress AKT pathway for 24h. Expression of important downstream transcriptional factor

proteins were analyzed by western blot. B-actin protein was measured as an internal control.
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The densitometry of autoradiograms was performed using an Alpha Imager. Data expressed in
integrated density value (IDV). *- control vs. treatment, p<0.05, n=3. See Materials and Method
section for additional experimental details.

Fig-3: Effects of ERK1/2 and AKT pathways on proliferation of human endometriotic
cells. Panel-1. The human endometriotic epithelial cells 12Z (Panel-1A) and stromal cells
22B (Panel-1B) were treated with MEK1/2 inhibitor (U0126, 0, 1, 10, 20, 50, 75, and 100 uM) to
suppress ERK1/2 pathway and/or PI3K inhibitor (LY294002, 0, 1, 10, 20, 50, 75, and 100 uM) to
suppress AKT pathway in vehicle (1% DMSO) in plain media for 24h.  *- control vs. treatment,
p<0.05, n=3. Panel-2A: The optimal concentration for was selected based on its effects on
proliferation of 12Z and 22B cells. The 12Z cells and stromal cells 22B were treated with
MEKZ1/2 inhibitor (U0126, 20um) and/or PI3K inhibitor (LY294002, 50um) for 24h. Panel-2B:
ERK1 and AKT genes were silenced using siRNA approach. The number of live cells were
counted at 48h post-transfection. In all experiments, the number of cells were counted using a
Coulter counter and considered as 100% present in control. Data were expressed as mean +
SEM of three independent experiments conducted in duplicate. a- control vs inhibition of
ERK1/2 pathway, b- control vs inhibition of AKT pathway, c- control vs. combined inhibition of
ERK1/2 and AKT pathways, p<0.05, n=3. See Materials and Method section for additional

experimental detalils.

Fig-4: Effects of ERK1/2 and AKT pathways on cell cycle regulation in human
endometriotic cells. The human endometriotic epithelial cells 12Z (Panel-1) and stromal cells
22B (Panel-2) were treated with MEK1/2 inhibitor (U0126, 20um) to suppress ERK1/2 pathway
and/or PI3K inhibitor (LY294002, 50um) to suppress AKT pathway for 24h. Distribution of cells
in different phases of cell cycle was measured by fluorescence activated cell sorting.
Histograms (A,D) show the effects of inhibition of ERK1/2, AKT or combination of both
pathways on distribution of cells in G1, S, and G2 phases of the cell cycle. Representative FL2A
plot shows the gated Sub G1/ G1/ S/IG2 cells in (B, E) control and (C, F) combined inhibition of
ERK1/2 and AKT pathways. a- control vs inhibition of ERK1/2 pathway, b- control vs inhibition of
AKT pathway, c- control vs. combined inhibition of ERK1/2 and AKT pathways, p<0.05, n=3.
See Materials and Method section for additional experimental details.
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Fig-5: Effects of ERK1/2 and AKT pathways on cell cycle regulatory proteins in human
endometriotic cells. Panel-1A: Representative Immunoblot. Panel 1B: Histogram. The human
endometriotic epithelial cells 12Z and stromal cells 22B were treated with MEK1/2 inhibitor
(U0126, 20um) to suppress ERK1/2 pathway or PI3K inhibitor (LY294002, 50um) to suppress
AKT pathway for 24h. Expression of important cell cycle regulatory proteins were analyzed by
western blot. B-actin protein was measured as an internal control. The densitometry of
autoradiograms was performed using an Alpha Imager. Data expressed in integrated density
value (IDV). *- control vs. treatment, p<0.05, n=3. See Materials and Method section for

additional experimental detalils.

Fig-6: Effects of ERK1/2 and AKT pathways on apoptosis of human endometriotic cells.
The human endometriotic epithelial cells 12Z (Panel-1) and stromal cells 22B (Panel-2) were
treated with MEK1/2 inhibitor (U0126, 20um) to suppress ERK1/2 pathway or PI3K inhibitor
(LY294002, 50um) to suppress AKT pathway for 24h. Nicks in the DNA were determined by
TUNEL assay and numbers of apoptotic cells were analyzed by a flowcytometer. Histograms
(A,D) show the effects of inhibition of ERK1/2, AKT or combination of both pathways on
apoptosis of cells. Representative FL1H plot shows the gated apoptotic cells in (B, E) control
and (C, F) combined inhibition of ERK1/2 and AKT pathways. a- control vs inhibition of ERK1/2
pathway, b- control vs inhibition of AKT pathway, c- control vs. combined inhibition of ERK1/2
and AKT pathways, p<0.05, n=3. See Materials and Method section for additional experimental

details.

Fig-7. Effects of ERK1/2 and AKT pathways on intrinsic apoptosis pathway proteins in
human endometriotic cells. Panel-1: Antiapoptotic and proapoptotic proteins. (1A)
Representative Immunoblot and (1B) Histogram. Panel-2: Caspase-3 and PARP proteins. (2A)
Representative Immunoblot and (2B) Histogram. Panel-3: Interactions between Bad and p-
P9ORSK and p-p70S6K. (3A) Representative immunoprecipitation/immunoblot and (3B)
Histogram. Panel-4: Interactions between Bax and p-p90RSK and p-p70S6K. (4A)
Representative immunoprecipitation/immunoblot and (4B) Histogram. The human endometriotic
epithelial cells 12Z and stromal cells 22B were treated with MEK1/2 inhibitor (U0126, 20um) to
suppress ERK1/2 pathway or PI3K inhibitor (LY294002, 50um) to suppress AKT pathway for

24h. Expression of intrinsic apoptosis pathway proteins were analyzed by western blot. B-actin
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protein was measured as an internal control. Protein-protein interaction was determined by
immunoprecipitation. 1gG was measured as internal control. The densitometry of
autoradiograms was performed using an Alpha Imager. Data expressed in integrated density
value (IDV). *- control vs. treatment, p<0.05, n=3. See Materials and Method section for

additional experimental details.

Fig-8: Effects of ERK1/2 and AKT pathways on growth and survival of endometriotic
lesions. A mixture of human endometriotic epithelial cells 12Z-GFP and stromal cells 22B-RFP
suspension was injected into the peritoneal cavity of Rag2g(c) mice and peritoneal
endometriosis was induced (day 1). The endometriosis mice were treated with MEK1/2 inhibitor
U0126 (UO@ 0, 25, 50 mg/kg) to suppress ERK1/2 pathway and/or PI3K inhibitor LY294002
(LY@ 0, 25, 50 mg/kg) to suppress AKT pathway from days 15-28. The mice were necropsied
on day 29-30 on E2-phase of the estrus cycle. Panel-1: Histogram shows the dose-dependent
inhibitory effects of ERK1/2 (n=3) or AKT (n=3) pathway on growth of endometriotic lesions.
Panel-2: Histogram shows the dose-dependent effects of combined inhibition of ERK1/2 or AKT
pathways (n=6) on growth of endometriotic lesions, (A) number of lesions and (B) volume of
lesions. Panel-3: Dose-dependent effects @ UOS50/LY50 is shown. (C1-C2) Fluorescence
zoomstereo microscopy examination of dissemination of 12Z-GFP and 22B-RFP cells of
endometriotic lesions in the peritoneal cavity, yellow arrows show the lesions. (C3) Histogram
shows number of 12Z-GFP and 22B-RFP cells in these endometriotic lesions. Panel-4:
Expression of (D1-D2) pAKT, (E1-E2) pERK1/2, (F1-F2) ki-67, and (G1-G2) cl-Caspase-3
proteins in the endometriotic lesions. (H1-H2): Negative control IgG. GLE: Glandular epithelial
cells. STR: Stromal cells. Relative expression was quantified using Image Pro-Plus. Panel-5:

Biochemical profile. *- control vs. treatment, p<0.05, n=6 mice.

Fig-9: ERK1/2 and AKT interactive and compensatory pathways in intracellular signaling
modules, cell cycle regulation, and intrinsic apoptosis in human endometriotic cells.
Panel-1:ERK1/2 and AKT interactive pathways in human endometriotic epithelial cells. Panel-2:

ERK1/2 and AKT interactive pathways in human endometriotic stromal cells.

Fig-10: Working model on ERK1/2 and AKT interactive pathways in growth and survival
of endometriotic lesions. Panel-1: (1) Activation of ERK1/2-p90RSK pathway phosphorylates
Bad at serine 112 and Bax at serine 184. (2) Activation of AKT-mTOR1-p70S6K pathways
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phosphorylates Bad at serine 136, and Bax at serine 184. In addition, AKT phosphorylates (2)
GSK3B at serine 9 and inhibits its ability to (3) phosphorylate Bax at serine 163, which is
necessary for conformation and translocation of Bax into mitochondria. These signaling
interactions (4) sequestrate p-Bad and p-Bax proteins in the cytosol with 14-3-3 proteins, and
(5) prevent translocation of p-Bad/p-Bax into the mitochondria, and their interactions with Bcl-
2/Bcl-XL proteins. (6) Further, activation of multiple ERK1/2 and AKT signaling modules (6)
increases expression of Bcl2 and Bcl-XL and cell cycle regulatory proteins. Together, the
hyperactivated ERK1/2 and AKT pathways (7) regulate cell cycle and (8) promote growth and
survival of endometriosis. Panel 2: (9) Inhibition of ERK1/2- p90RSK, AKT-mTOR1-p70S6K and
AKT-GSK3p modules in turn dephosphorylates (9) Badl112/136 and Bax184 and (10)
phosphorylates Bax163. These signaling interactions (11) dissociate Bad and Bax from 14-3-3
protein, (12) translocate them into the mitochondria and (13-15) activate intrinsic apoptotic
pathways. In addition, suppression of multiple ERK1/2 and AKT signaling modules regulate (16)
expression of Bcl2 and Bcl-XL proteins and (17) cell cycle regulatory proteins. Together,
inhibition of ERK1/2 and AKT interactive pathways (18) decrease growth and apoptosis of

endometriosis.

Table 1: Details of the antibody used.
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Details of Antibodies Used Manufacturer Cat # Concentration
Used in WB (ICC)
Anti-human rabbit monoclonal pAKT Cell Signaling 4060 1:1000 (1:100)
Anti-human rabbit monoclonal pERK1/2 Cell Signaling 4370 1:1000 (1:100)
Anti-human rabbit polyclonal B-catenin Cell Signaling 9562 1:1000
Anti-human rabbit polyclonal p-p90RSK Cell Signaling 9344 1:500
Anti-human rabbit monoclonal t-p90RSK Cell Signaling 9355 1:1000
Anti-human rabbit polyclonal p-p70S6K Cell Signaling 9204 1:500
Anti-human rabbit polyclonal t-p70s6K Cell Signaling 9202 1:1000
Anti-human rabbit polyclonal p-mTOR1 r Cell Signaling 2971 1:1000
Anti-human rabbit polyclonal t-mTOR-1 Cell Signaling 2972 1:1000
Anti-human rabbit polyclonal b-Catenin Cell Signaling 9562 1:1000
Anti-human rabbit polyclonal NFkB-p65 Cell Signaling 3034 1:1000
Anti-human rabbit polyclonal c-Jun Cell Signaling 9162 1:500
Anti-human rabbit polyclonal c-Fos Cell Signaling 4384 1:500
Anti-human rabbit polyclonal Spl Santa Cruz Sc-59 1:1000
Anti-human rabbit polyclonal p-CREB Cell Signaling 9191 1:500
Anti-human rabbit polyclonal ETS-1 Santa Cruz SC-112 1:1000
Anti-human rabbit polyclonal EGR-1 Cell Signaling 4152 1:1000
Anti-human mouse monoclonal CDK1 Cell Signaling 9116 1:1000
Anti-human rabbit monoclonal CDK2 Abcam ab32147 [1:1000
Anti-human mouse monoclonal CDK4 Cell Signaling 2906 1:1000
Anti-human mouse monoclonal CDK6 Cell Signaling 3136 1:1000
Anti-human mouse monoclonal Cyclin A Cell Signaling 4656 1:2000
Anti-human rabbit polyclonal Cyclin B1 Abcam ab2949 1:2000
Anti-human mouse monoclonal Cyclin D1 Cell Signaling 2926 1:1000
Anti-human rabbit polyclonal Cyclin D2 Cell Signaling 2924 1:1000
Anti-human mouse monoclonal Cyclin D3 Cell Signaling 2936 1:1000
Anti-human rabbit polyclonal Cyclin E2 Cell Signaling 4132 1:1000
Anti-human rabbit polyclonal Bcl-2 Santa Cruz SC-783 1:1000
Anti-human rabbit polyclonal Bcl-XL Cell Signaling 2762 1:1000
Anti-human rabbit polyclonal XIAP Cell Signaling 2042 1:1000
Anti-human mouse polyclonal p-Bad112 Cell Signaling 9296 1:500
Anti-human rabbit polyclonal p-Bad136 Cell Signaling 9295 1:500
Anti-human rabbit polyclonal t-Bad Cell Signaling 9292 1:500
Anti-human rabbit polyclonal t-Bax Cell Signaling 2774 1:1000
Anti-human rabbit polyclonal cl-Caspase3 Cell Signaling 9661 1:1000 (1:100)
Anti-human mouse monoclonal cl-PARP Abcam ab110315 (1:1000 (1:100)
Anti-human mouse monoclonal B-actin Sigma-Aldrich A2228 1:10000
Anti-Mouse goat polyclonal IgG1 Secondary Invitrogen A21121  |(1:250)
Antibody, Alexa Fluor 488 conjugate
Anti-Rabbit goat polyclonal IgG (H+L) Secondary| Invitrogen A11008  |(1:250)
Antibody, Alexa Fluor 488 conjugate
Anti-Mouse goat polyclonal IgG (H+L) Invitrogen Al11032  |(1:500)
Secondary Antibody, Alexa Fluor 594 conjugate
Anti-Rabbit goat polyclonal IgG (H+L) Secondary| Invitrogen A11037  |(1:500)

Antibody, Alexa Fluor 594 conjugate
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